Solving the Axisymmetric Inverse Heat Conduction Problem by a Wavelet Dual Least Squares Method
نویسندگان
چکیده
We consider an axisymmetric inverse heat conduction problem of determining the surface temperature from a fixed location inside a cylinder. This problem is ill-posed; the solution if it exists does not depend continuously on the data. A special project method—dual least squares method generated by the family of Shannon wavelet is applied to formulate regularized solution. Meanwhile, an order optimal error estimate between the approximate solution and exact solution is proved.
منابع مشابه
Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملSolving an Inverse Heat Conduction Problem by Spline Method
In this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. The given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. A set of temperature measurements at a single sensor location inside the heat conduction body is required. The result show that the proposed meth...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملDetermination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions
In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...
متن کاملSolving random inverse heat conduction problems using PSO and genetic algorithms
The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...
متن کامل